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Who am I?

Essentially:

Sometimes a web server guy, sometimes a web application guy
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Common ways to deploy Python applications

• httpd + mod wsgi + Django app

• httpd + mod proxy/mod proxy protocol + (uWSGI or
Gunicorn) + Django app

• nginx + proxy protocol + (uWSGI or Gunicorn) + Django app

The nginx flavor is essentially the same as the second httpd flavor.

Django app is Python + Django + libraries + your application.
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mod wsgi

httpd

mod wsgi and Django app (embedded mode) Django app (daemon mode)

• Django app can run inside or outside of httpd processes
(embedded or daemon)

• No concerns about lifecycle of Django app since it matches
that of httpd — great for small scripts that don’t warrant
much effort
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mod proxy + mod proxy protocol

mod proxy + mod proxy protocol

httpd

Django app

uWSGIHTTP

FastCGI

SCGI

• uWSGI/Gunicorn largely interchangable

• httpd/nginx largely interchangable

• Choice of wire protocols between web server and application

• Lifecycle of uWSGI has to be managed in addition to that of
web server
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mod wsgi vs. mod proxy-based solution

Reasons you may want to move beyond mod wsgi:

• mod proxy supports more separation between web server and
application.

• Moving applications around or running applications in different
modes for debugging without changing web server

• Changes to the web front-end without affecting application
• No collision between software stack in web server vs. software

stack in application (e.g., different OpenSSL versions)

• mod proxy has a lot of shared code, configuration, and
concepts that are applicable to other application hosting.

• mod wsgi doesn’t support WebSockets.
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Choices within the mod proxy space

Further choices arise once mod proxy is selected:

• Wire protocol (HTTP, FastCGI, or SCGI)

• Socket transport (TCP or Unix)

• Load balancing

• Application container (uWSGI, Gunicorn, etc.)
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HTTP vs. FastCGI vs. SCGI

• Speed (with httpd)
• SCGI faster than FastCGI
• FastCGI faster than HTTP

• Speed (with nginx) SCGI, FastCGI, HTTP pretty close
(significantly lower requests/sec than httpd with FastCGI or
SCGI for the workloads I tried)

• SCGI is by far the simplest protocol, and HTTP is by far the
most complex.

• Encryption
• HTTP supports encryption between web server and

application, but the others do not.

• Tool support (telnet-as-client, Wireshark, etc.)
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What SCGI looks like

int main(int argc, char **argv)

{

socket(); bind(); listen();

while (1) {

int cl = accept();

read(cl, buf);

0x0000: 3233 3433 3a43 4f4e 5445 4e54 5f4c 454e 2343:CONTENT_LEN

0x0010: 4754 4800 3000 5343 4749 0031 0055 4e49 GTH.0.SCGI.1.UNI

0x0020: 5155 455f 4944 0056 5764 4f50 5838 4141 QUE_ID.VWdOPX8AA

0x0030: 5145 4141 476d 5745 6751 4141 4141 4c00 QEAAGmWEgQAAAAL.

0x0040: 7072 6f78 792d 7363 6769 2d70 6174 6869 proxy-scgi-pathi

...

write(cl, buf);

0x0000: 5374 6174 7573 3a20 3230 3020 4f4b 0d0a Status: 200 OK..

0x0010: 582d 4672 616d 652d 4f70 7469 6f6e 733a X-Frame-Options:

0x0020: 2053 414d 454f 5249 4749 4e0d 0a43 6f6e SAMEORIGIN..Con

0x0030: 7465 6e74 2d54 7970 653a 2074 6578 742f tent-Type: text/

0x0040: 6874 6d6c 3b20 6368 6172 7365 743d 7574 html; charset=ut

...

close(cl);

}

}
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sysdig hint

sudo sysdig -X proc.name=httpd and fd.num=37
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TCP sockets vs. Unix sockets

• With both httpd and nginx, for all protocols tested, Unix
sockets1 are noticeably faster than TCP.

• The more complex Unix socket permissions can be a blessing
or a curse.

• TCP supports distribution among different hosts.

• TCP consumes kernel resources (and confuses many users of
netstat) while sockets remain in TIME WAIT state.

• TCP’s requirement for lingering close can require more server
(application container) resources.

1Unix socket support in mod proxy for HTTP and FastCGI requires httpd
2.4.7 or later; Unix socket support in mod proxy for SCGI requires httpd 2.4.10
or later.
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Some cases with simple decision-making

• If speed is of absolute concern, pick SCGI with Unix sockets.

• If interoperability of your application stack for diagnostics or
any other purpose is of absolute concern, pick HTTP with
TCP sockets.

• If encryption between the web server and application is of
absolute concern, pick HTTP.

• If securing your application stack from other software in your
infrastructure is of absolute concern, and your application and
web server run on the same host, pick anything with Unix
sockets.
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For this talk

SCGI with TCP sockets between httpd and the application2

LoadModule proxy_module modules/mod_proxy.so

LoadModule proxy_scgi_module modules/mod_proxy_scgi.so

2Mostly... Our WebSocket example is different.
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SCGI differences between httpd 2.2 and 2.4

mod proxy scgi in 2.4

• Requires proxy-scgi-pathinfo envvar to be set in order to
set PATH INFO as required for many Python applications

• Adds support for Unix sockets (2.4.10)

• Supports internal redirects via arbitrary response headers set
by the application (2.4.13)

• Passing authentication headers to the application sanely

• Any generic features added to mod proxy in 2.4
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Differences between 2.4.something and 2.4.current

I.e., mod proxy scgi improvements after some level of Ubuntu, for
example

Ubuntu 14.04 has 2.4.7; Ubuntu 16.04 has 2.4.18; current
upstream is 2.4.20

Caught in the middle?

• 2.4.10 adds support for Unix sockets

• 2.4.13 supports internal redirects via arbitrary response
headers set by the application

• 2.4.13 adds CGIPassAuth

See https://wiki.apache.org/httpd/Get24 for hints on which
distros bundle which levels of httpd.

https://wiki.apache.org/httpd/Get24
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PPA for httpd 2.4.latest

https://launchpad.net/~ondrej/+archive/ubuntu/apache2

• ppa:ondrej/apache2

• From Onďrej Surý

• Tracks httpd 2.4.x

• Currently has 2.4.20 for Ubuntu precise, trusty, wily, and
xenial

https://launchpad.net/~ondrej/+archive/ubuntu/apache2


Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Minimal build of httpd 2.4 to support Python applications

If you need to build from source

./configure \

--with-included-apr --enable-nonportable-atomics \

--enable-exception-hook \

--enable-mpms-shared=all --enable-mods-shared=few \

--enable-expires=shared --enable-negotiation=shared \

--enable-rewrite=shared --enable-socache-shmcb=shared \

--enable-ssl=shared --enable-deflate=shared \

--enable-proxy=shared --enable-proxy-scgi=shared \

--disable-proxy-connect --disable-proxy-ftp \

--disable-proxy-http --disable-proxy-fcgi \

--disable-proxy-wstunnel --disable-proxy-ajp \

--disable-proxy-express --disable-lbmethod-bybusyness \

--disable-lbmethod-bytraffic \

--disable-lbmethod-heartbeat

(But keep proxy-http and proxy-wstunnel for WebSockets.)



Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Building blocks on the application side

• Django for the web application framework

• uWSGI for the “container” that hosts/manages the
application processes, along with

• An init script to start/stop the application by controlling
uWSGI

• A uWSGI configuration file
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Where is the sample code?

https://github.com/trawick/httpd.py

(branch AC2016)

You’ll see snippets on later slides.

https://github.com/trawick/httpd.py
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Simplest little bit of Django

from django.http import HttpResponse

PATH_VARS = ('PATH_INFO', 'PATH_TRANSLATED', 'SCRIPT_FILENAME',

'REQUEST_URI', 'SCRIPT_URI')

def cgivars(request):

return HttpResponse('<br />'.join(map(lambda x: '%s => %s' %

(x, request.environ.get(x, '&lt;unset&gt;')), PATH_VARS))

)

urlpatterns = [

url(r'^cgivars/$', views.cgivars),

]

Listen 18083

<VirtualHost 127.0.0.1:18083>

# Lots of stuff inherited from global scope

SetEnvIf Request_URI . proxy-scgi-pathinfo

ProxyPass /app/ scgi://127.0.0.1:3006/

</VirtualHost>
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Running the Django app via uWSGI

simple script for running in the foreground

• terminal or PyCharmˆHˆHˆHˆHˆHˆHˆHIDE, but not
deployment

VENV=/home/trawick/envs/httpd.py

${VENV}/bin/uwsgi --scgi-socket 127.0.0.1:3006 \

--module app.wsgi \

--chdir /home/trawick/git/httpd.py/Django/app \

--virtualenv ${VENV}
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Running the Django app in simple Python container

Sometimes you need to debug your app in a deployment-like
scenario, such as with a web server front-end.

• flup is pure Python, so you can attach for debugging in the
usual manner

• Uses the same protocol as production deployment

• May need to tweak processes/threads to make it easy to
debug a request
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X-Sendfile to offload file serving to the web server

from django.http import HttpResponse

def sendfile(request):

filename = request.environ['DOCUMENT_ROOT'] + '/' + 'bigfile.html'

response = HttpResponse()

response['X-Sendfile'] = filename

return response

urlpatterns = [

url(r'^sendfile/$', views.sendfile),

]

# add to .conf for httpd:

ProxySCGISendfile On
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X-Location to offload request after application authorizes it

def protected(request):

filename = '/static/protected/index.html'

response = HttpResponse()

# Django prior to 1.9 will turn this

# into Location: http://127.0.0.1:18083/static/protected/foo

# response['Location'] = filename

# This is passed through unadulterated:

response['X-Location'] = filename

return response

# add to .conf for httpd:

ProxySCGIInternalRedirect X-Location

ProxyPass /static/protected/ !

...

# Only allow access to /static/protected/ if a request to /app/protected/

# redirected there. (I.e., must have been redirected, must have hit

# the app first)

<Location /static/protected/>

Require expr %{reqenv:REDIRECT_REQUEST_URI} =~ m#^/app/protected/#

</Location>
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Streaming a response through web server

from django.http import StreamingHttpResponse

def export_stacktraces(request):

def generate_response(qs):

yield '['

need_comma = False

for st in qs:

if need_comma:

yield ','

yield json.dumps(st.raw)

need_comma = True

yield ']'

resp = StreamingHttpResponse(

generate_response(Stacktrace.objects.filter(owner=request.user)),

content_type='application/json'

)

resp['Content-Disposition'] = 'attachment; filename=stacktraces.json'

return resp
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Handling /static/ for apps

With the proper preparation, Django’s ./manage.py collectstatic will collect
static files into a location that the web server knows about and can serve.

Alias /static/ {{ static_dir }}/

...

ProxyPass /static/ !

...

<Directory {{ static_dir }}/>

Require all granted

# only compress static+public files (see BREACH)

SetOutputFilter DEFLATE

# if they aren't naturally compressed

SetEnvIfNoCase Request_URI \.(?:gif|jpe?g|png)$ no-gzip

ExpiresActive On

ExpiresDefault "access plus 3 days"

Header set Cache-Control public

</Directory>

Consider something similar for /media/.
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robots.txt in /static/ too?

Alias /robots.txt {{ static_dir }}/robots.txt

...

ProxyPass /robots.txt !

...

Consider something similar for /favicon.ico.
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Add load balancing

LoadModule proxy_balancer_module modules/mod_proxy_balancer.so

LoadModule lbmethod_byrequests_module modules/mod_lbmethod_byrequests.so

ProxyPass /app/ balancer://app-pool/

<Proxy balancer://app-pool/>

BalancerMember scgi://127.0.0.1:10080

BalancerMember scgi://127.0.0.1:10081

# The server below is on hot standby

BalancerMember scgi://127.0.0.1:10082 status=+H

ProxySet lbmethod=byrequests

</Proxy>

(Also has a “balancer manager” which can be used to change settings dynamically)
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I/O timeouts

• By default, the I/O timeout is the value of the Timeout

directive (i.e., same as client I/O timeout).

• ProxyTimeout overrides that for proxy connections.

• Max time without being able to read one byte when trying to
read (or similar for write)

• This covers application time to build the response.
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Recovery from backend errors

ProxyPass options:

• retry=seconds specifies the time before sending another
connection to a previously-unhealthy application (e.g.,
ECONNREFUSED)

• No other load balanced instances? You probably want this
much lower than the default, 60 seconds.

• For balancer members: failonstatus=nnn,nnn,... will
also treat the specified HTTP status codes from the
application as indicating that it is unhealthy
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Handling Basic auth in the application

• Apps commonly use form+cookie-based auth.

• Basic auth handled by the application may be useful.

• Normally httpd hides Authorization and
Proxy-Authorization request headers from applications
(can be subverted).

• mod wsgi provides the WSGIPassAuthorization directive to
enable that.

• CGIPassAuth3 directive enables this cleanly for all CGI-like
interfaces.

<Location /legacy-reports/>

CGIPassAuth On

</Location>

3httpd ≥ 2.4.13
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WebSockets

• Long-running, lightweight connections
• Little if any overhead imposed on performance-sensitive

application (e.g., games)
• Little if any overhead imposed on infrastructure to maintain

lots of these connections

• Kept alive by browser and application container (ping and
pong)

• Application code in browser and application only wake up
when necessary

• Set up when a special HTTP request is upgraded to a
WebSocket tunnel between client and application

• HTTP proxies usually support WebSockets

• Requires HTTP from client to application, so no FastCGI or
SCGI transport for the WebSocket data
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Some Python WebSockets caveats

Now:

• WSGI doesn’t encompass WebSockets

• No other finalized PEP/standard covers Python interface to
WebSockets

• Not abundantly clear that current Django has a particular
right way to do it

• Lack of interchangability of components in some cases (e.g.,
Flask-SocketIO works with Gunicorn but not with uWSGI)

Start looking at:

• WSGI-NG
(https://github.com/python-web-sig/wsgi-ng)

• Django Channels
(https://channels.readthedocs.io/en/latest/)

https://github.com/python-web-sig/wsgi-ng
https://channels.readthedocs.io/en/latest/
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WebSockets example

• Uses HTTP + WebSockets extension between web server and
application, instead of SCGI like in our other examples

• Uses uWSGI Python API instead of a container-agnostic API
or framework like Django; this works around some of the
caveats listed earier

• web server configuration would be the same anyway
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WebSockets example using uWSGI API

import uwsgi # not installed in venv but works under uWSGI :(

html_template = <<<the JavaScript WebSocket client>>>

def application(env, sr):

if env['PATH_INFO'] == '/':

ws_scheme = 'ws'

if 'HTTPS' in env or env['wsgi.url_scheme'] == 'https':

ws_scheme = 'wss'

sr('200 OK', [('Content-Type', 'text/html')])

host = env.get('HTTP_X_FORWARDED_HOST', env['HTTP_HOST'])

return index_html_template % (ws_scheme, host)

elif env['PATH_INFO'] == '/ws/':

uwsgi.websocket_handshake(env['HTTP_SEC_WEBSOCKET_KEY'],

env.get('HTTP_ORIGIN', ''))

while True:

msg = uwsgi.websocket_recv()

uwsgi.websocket_send(msg)

else:

sr('404 NOT FOUND', [('Content-Type', 'text/plain')])

return 'Not found'



Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Some of the JavaScript code

See the template aspect of the JS snippet, as well as the I/O.

function init() {

var s = new WebSocket("%s://%s/ws/");

...

s.onopen = function() { s.send(i); }

s.onmessage = function(e) {

window.setTimeout(function () {

s.send(i);

}, 1500);

}

s.onerror = function(e) { ... }

s.onclose = function() { ... }

}

window.onload = init;
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Running the WebSocket app

simple script for running in the foreground

• terminal or IDE, but not deployment

VENV=/home/trawick/envs/httpd.py

# gevent parameter needed to support more than one WebSocket

# request (i.e., set up gevent)

${VENV}/bin/uwsgi --http-socket 127.0.0.1:3007 \

--http-raw-body \

--gevent 100 \

--wsgi-file app.py \

--chdir /home/trawick/git/httpd.py/uWSGI-websocket
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.conf for proxying to the WebSocket app

Listen 18085

<VirtualHost 127.0.0.1:18085>

# Lots of stuff inherited from global scope

CustomLog logs/websocket-app-access.log common

ErrorLog logs/websocket-app-error.log

LogLevel warn

# Note that /ws/ is the exception among all requests.

# Put that first so that it won't be handled by HTTP.

ProxyPass /ws/ ws://127.0.0.1:3007/ws/

ProxyPass / http://127.0.0.1:3007/

ProxyPassReverse / http://127.0.0.1:3007/

</VirtualHost>
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End of WebSockets example
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A more complete example .conf

for a non-WebSockets application, in the form of a Jinja2 template

<VirtualHost *:80>

ServerName {{ canonical_server_name }}

Redirect permanent / https://{{ canonical_server_name }}/

</VirtualHost>

<VirtualHost *:443>

ServerName {{ canonical_server_name }}

ServerAdmin me@example.com

CustomLog {{ log_dir }}/httpd-access.log common

ErrorLog {{ log_dir }}/httpd-error.log

LogLevel {{ httpd_log_level }}

continued
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A more complete example .conf

# DocumentRoot unused since / is proxied; point it

# to something users can access anyway

DocumentRoot {{ static_dir }}/

<Directory />

Options FollowSymLinks

Require all denied

AllowOverride None

</Directory>

continued
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A more complete example .conf

SetEnvIf Request_URI . proxy-scgi-pathinfo

ProxyTimeout 30

# ProxySCGISendfile On

# ProxySCGIInternalRedirect X-Location

Alias /robots.txt {{ static_dir }}/robots.txt

Alias /static/ {{ static_dir }}/

# Alias /media/ XXXXX

ProxyPass /robots.txt !

ProxyPass /static/ !

# ProxyPass /media/ !

ProxyPass / scgi://127.0.0.1:{{ application_port }}/ retry=5

continued
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A more complete example .conf

<Directory {{ static_dir }}>

Require all granted

# only compress static+public files (see BREACH)

SetOutputFilter DEFLATE

# if they aren't naturally compressed

SetEnvIfNoCase Request_URI \.(?:gif|jpe?g|png)$ no-gzip

ExpiresActive On

ExpiresDefault "access plus 3 days"

Header set Cache-Control public

</Directory>

continued
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A more complete example .conf

SSLEngine on

# SSL protocols/ciphers/etc. inherited from global scope

Header always set Strict-Transport-Security "max-age=31536000"

SSLCertificateKeyFile /path/to/server.key

SSLCertificateFile /path/to/server.crt

</VirtualHost>
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________________________________

/ PLAY [Configure and deploy the \

\ application code /

--------------------------------

\

\ \_\_ _/_/

\ \__/

(==)\_______

(__)\ )\/\

||----w |

|| ||
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Vagrant and Ansible

• Ansible for system configuration and application deployment
• Same automation for staging, production, other images
• Same automation whether system is provisioned with Vagrant

or other tools

• Vagrant to automate creation of server VM
• Automating mint machine together with configuration and

deployment ensures that all aspects are covered.

https://github.com/trawick/httpd.py/tree/AC2016/

Django/deploy

https://github.com/trawick/httpd.py/tree/AC2016/Django/deploy
https://github.com/trawick/httpd.py/tree/AC2016/Django/deploy
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Features of the automation

The deployment consists of one Ubuntu server, the webserver,
which runs the web server, Django application, and database.

• Create a user to own application resources, add to sudoers

• Install necessary system packages, as well as httpd-latest from
a PPA

• Set up PostgreSQL user and database

• Create Python virtual environment with necessary libraries

• Configure httpd to route to application

• Configure uWSGI and its lifecycle to host application
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Parts of the automation

Vagrantfile

Create the machine, invoke Ansible

Ansible playbook deploy.yml

Commands to configure system and deploy
application

Ansible hosts file
Variables specific to a particular server, such as
passwords or IP addresses or . . .

Template files
Various configuration files filled in with data specific
to the deployment or server
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Simplified file layout for example

./deploy.yml

./ansible/vagrant-hosts

./ansible/OTHER-hosts

./templates/init-script.j2

./templates/django-app.conf.j2

./templates/uwsgi-ini.j2

./Vagrantfile

(significantly simplified layout compared with many Ansible
examples)
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Invoking Vagrant and Ansible

• Bring up VM, create and/or provision as necessary

$ vagrant up

• Re-provision existing VM

$ vagrant provision

• Create new, provisioned VM from scratch, discarding one that
already exists

$ vagrant destroy -f ; vagrant up

• Invoke Ansible directly against a different host

$ ansible-playbook -i ansible/OTHER-hosts deploy.yml

• See also vagrant up, vagrant halt, vagrant suspend,
vagrant ssh, etc.
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Using files directly from control host or from repo?

• Ansible config and templates/other files copied to server via
Ansible come from git checkout on control host.

• No need to push these changes to git repo before testing

• Application runs from git checkout on the server.
• Must push application updates to git repo before re-deploying



Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Vagrantfile

Vagrant.configure(2) do |config|

config.vm.box = "precise32"

config.vm.box_url = "http://files.vagrantup.com/precise32.box"

config.vm.network "private_network", ip: "10.10.10.15"

config.vm.provision "ansible", run: "always" do |ansible|

# ansible.verbose = "vvvv"

ansible.limit = "all"

ansible.playbook = "deploy.yml"

ansible.inventory_path = "ansible/vagrant-hosts"

end

end

• precise32 is 32-bit Ubuntu 12 server
• Create entry in your /etc/hosts to map simple-django.com to

10.10.10.15
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ansible/vagrant-hosts

[webservers]

vagrant ansible_ssh_host=127.0.0.1 ansible_ssh_port=2222

[webservers:vars]

initial_user=vagrant

log_dir=/tmp

pg_password=simple-django-db-password

git_repo_version=master

app_processes=1

app_threads=2

• 2222 is ssh port assigned by Vagrant for webserver VM
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Overall structure of deploy.yml

---

- name: Create remote user

hosts: webservers

vars:

remote_user: django-user

remote_user: "{{ initial_user }}"

sudo: true

tasks:

<<<create remote user, add to sudoers>>>

- name: Configure and deploy the application code

hosts: webservers

vars:

remote_user: django-user

application_port: 3006

http_port: 80

remote_checkout: /home/django-user/httpd.py

<<<other settings>>>

remote_user: "{{ remote_user }}"

tasks:

<<<remaining system and application configuration>>>

handlers:

<<<restart application and/or web server at end>>>
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Install/update python-software-properties

- name: Make sure python-software-properties is installed

apt: pkg=python-software-properties state=latest

sudo: yes

_________________________________________________________

< TASK: Make sure python-software-properties is installed >

---------------------------------------------------------

\ ^__^

\ (oo)\_______

(__)\ )\/\

||----w |

|| ||

changed: [vagrant]
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Add PPA repo for httpd 2.4.latest

- name: Add ppa repo for httpd 2.4.latest

apt_repository: repo='ppa:ondrej/apache2/ubuntu'

sudo: yes

_________________________________________

< TASK: Add ppa repo for httpd 2.4.latest >

-----------------------------------------

\ ^__^

\ (oo)\_______

(__)\ )\/\

||----w |

|| ||

changed: [vagrant]
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Install system packages
- name: Install packages

apt: name={{ item }} state=latest

sudo: yes

with_items:

- apache2

- git

- python-virtualenv

- postgresql

- libpq-dev

- python-dev

- python-psycopg2

________________________

< TASK: Install packages >

------------------------

\ ^__^

\ (oo)\_______

(__)\ )\/\

||----w |

|| ||

changed: [vagrant] => (item=apache2,git,python-virtualenv,postgresql,libpq-dev,...
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Run httpd at boot

- name: Make sure httpd is started and will run at boot

service: name=apache2 state=started enabled=yes

_______________________________________________________

< TASK: Make sure httpd is started and will run at boot >

-------------------------------------------------------

\ ^__^

\ (oo)\_______

(__)\ )\/\

||----w |

|| ||

ok: [vagrant]
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Activate httpd modules
- name: Configure system httpd to include various modules

apache2_module: state=present name={{ item }}

sudo: yes

with_items:

- proxy

- proxy_scgi

- headers

- deflate

- expires

notify: restart system httpd

_________________________________________________________

< TASK: Configure system httpd to include various modules >

---------------------------------------------------------

\ ^__^

\ (oo)\_______

(__)\ )\/\

||----w |

|| ||

changed: [vagrant] => (item=proxy)

changed: [vagrant] => (item=proxy_scgi)

changed: [vagrant] => (item=headers)

ok: [vagrant] => (item=deflate)

changed: [vagrant] => (item=expires)
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Remove Debian/Ubuntu default vhost

- name: Remove default virtualhost file.

file:

path: "/etc/apache2/sites-enabled/000-default.conf"

state: absent

sudo: yes

notify: restart system httpd

________________________________________

< TASK: Remove default virtualhost file. >

----------------------------------------

\ ^__^

\ (oo)\_______

(__)\ )\/\

||----w |

|| ||

changed: [vagrant]
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Configure application vhost

- name: Configure system httpd

template: src=templates/django-app.conf.j2

dest=/etc/apache2/sites-enabled/{{ project_name }}-vhost.conf

sudo: yes

notify: restart system httpd

______________________________

< TASK: Configure system httpd >

------------------------------

\ ^__^

\ (oo)\_______

(__)\ )\/\

||----w |

|| ||

changed: [vagrant]



Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Create uWSGI config directory

- name: Create uWSGI config directory

file: >

dest={{ uwsgi_cfg_dir }}

mode=755

owner=root

group=root

state=directory

sudo: yes

notify: restart application

_____________________________________

< TASK: Create uWSGI config directory >

-------------------------------------

\ ^__^

\ (oo)\_______

(__)\ )\/\

||----w |

|| ||

changed: [vagrant]
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Install/update uWSGI config

- name: Add application uWSGI config

template: src=templates/uwsgi-ini.j2

dest={{ uwsgi_cfg_dir }}/{{ project_name }}.ini

sudo: yes

notify: restart application

____________________________________

< TASK: Add application uWSGI config >

------------------------------------

\ ^__^

\ (oo)\_______

(__)\ )\/\

||----w |

|| ||

changed: [vagrant]
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Add application init script

- name: Add application init script

template: src=templates/init-script.j2

dest=/etc/init.d/{{ project_name }}-app

mode=0751

sudo: yes

notify: restart application

___________________________________

< TASK: Add application init script >

-----------------------------------

\ ^__^

\ (oo)\_______

(__)\ )\/\

||----w |

|| ||

changed: [vagrant]



Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Configure run-levels for application

- name: Configure run-levels for application

command: update-rc.d {{ project_name }}-app defaults

sudo: yes

____________________________________________

< TASK: Configure run-levels for application >

--------------------------------------------

\ ^__^

\ (oo)\_______

(__)\ )\/\

||----w |

|| ||

changed: [vagrant]
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Run application

- name: Run application

action: service name={{ project_name }}-app state=started

sudo: yes

_______________________

< TASK: Run application >

-----------------------

\ ^__^

\ (oo)\_______

(__)\ )\/\

||----w |

|| ||

changed: [vagrant]
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Handler to restart application if needed

- name: restart application

service: name={{ project_name }}-app state=restarted

sudo: yes

_______________________________

< NOTIFIED: restart application >

-------------------------------

\ ^__^

\ (oo)\_______

(__)\ )\/\

||----w |

|| ||

changed: [vagrant]
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Handler to restart httpd if needed

- name: restart system httpd

service: name=apache2 state=restarted

sudo: yes

________________________________

< NOTIFIED: restart system httpd >

--------------------------------

\ ^__^

\ (oo)\_______

(__)\ )\/\

||----w |

|| ||

changed: [vagrant]
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.conf template
{% if http_port != 80 %}

Listen {{ http_port }}

{% endif %}

<VirtualHost *:{{ http_port }}>

ServerName simple-django.com

# Lots of stuff inherited from global scope

DocumentRoot {{ remote_checkout }}/Django/docroot

<Directory {{ remote_checkout }}/Django/docroot/>

Require all granted

</Directory>

CustomLog {{ log_dir }}/django-app-access.log common

ErrorLog {{ log_dir }}/django-app-error.log

LogLevel warn

SetEnvIf Request_URI . proxy-scgi-pathinfo

ProxySCGISendfile On

<IfVersion >= 2.4.13>

ProxySCGIInternalRedirect X-Location

</IfVersion>

ProxyPass /static/protected/ !

ProxyPass /app/ scgi://127.0.0.1:{{ application_port }}/

# Only allow access to /static/protected/ if a request to /app/protected/

# redirected there. (I.e., must have been redirected, must have hit

# the app first)

<Location /static/protected/>

Require expr %{reqenv:REDIRECT_REQUEST_URI} =~ m#^/app/protected/#

</Location>

</VirtualHost>
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uWSGI configuration template

[uwsgi]

pidfile = {{ log_dir }}/{{ project_name }}.pid

daemonize = {{ log_dir }}/uwsgi-{{ project_name }}.log

scgi-socket = 127.0.0.1:{{ application_port }}

chdir = {{ django_src }}

module = app.wsgi

master = true

processes = {{ app_processes }}

threads = {{ app_threads }}

uid = {{ remote_user }}

gid = {{ remote_user }}

virtualenv = {{ virtualenv_dir }}

buffer-size = 8192
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Init script template
#!/bin/sh

SERVICE_NAME={{ project_name }}-app

PIDFILE={{ log_dir }}/{{ project_name }}.pid

UWSGI_INI={{ uwsgi_cfg_dir }}/{{ project_name }}.ini

UWSGI_ENV={{ virtualenv_dir }}

. ${UWSGI_ENV}/bin/activate

<<<helper functions>>>

case "$1" in

status)

status_service

;;

start)

start_service

;;

stop)

stop_service

;;

restart)

if is_running; then

stop_service

fi

start_service

;;

*)

echo "Usage: service $SERVICE_NAME {start|stop|restart|status}" >&2

exit 1

;;

esac

exit 0
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General httpd features which can be useful

• Web server cache (mod cache, mod disk cache)

• Web server logging tricks
• Configure httpd and application log formats to include
UNIQUE ID

• Add response time (and maybe time to first byte4) in httpd
access log

• See
http://people.apache.org/~trawick/AC2014-Debug.pdf

for different tricks applicable to diagnosing application
symptoms.

• Load balancing and mod proxy balancer manager

• Monitoring capacity utilization for httpd and application

4mod logio’s LogIOTrackTTFB was added in 2.4.13.

http://people.apache.org/~trawick/AC2014-Debug.pdf
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Caktus Group project template

• Relatively complete application and infrastructure
configuration

• Much more complex than the Ansible example, but handles
many more requirements

• https://github.com/caktus/django-project-template

• Salt instead of Ansible

• nginx instead of httpd

https://github.com/caktus/django-project-template
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A few things to add for the 5 hour version of this talk

• Django implementations of Basic auth

• Live load balancer demo, making dynamic changes via load
balancer manager interface

• Current status of WSGI-NG and Django Channels, how to
experiment with available code for Channels

• Your ideas
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Thank you!
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