
Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Django + httpd

Jeff Trawick

http://emptyhammock.com/

May 12, 2016

ApacheCon NA 2016

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Get these slides...

http://emptyhammock.com/projects/info/slides.html

Get a fresh copy of the slide deck before using any recipes. If I find
errors before this deck is marked as superseded on the web page,

I’ll update the .pdf and note important changes here. (And please
e-mail me with any problems you see.)

http://emptyhammock.com/projects/info/slides.html

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Who am I?

Essentially:

Sometimes a web server guy, sometimes a web application guy

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Common ways to deploy Python applications

• httpd + mod wsgi + Django app

• httpd + mod proxy/mod proxy protocol + (uWSGI or
Gunicorn) + Django app

• nginx + proxy protocol + (uWSGI or Gunicorn) + Django app

The nginx flavor is essentially the same as the second httpd flavor.

Django app is Python + Django + libraries + your application.

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

mod wsgi

httpd

mod wsgi and Django app (embedded mode) Django app (daemon mode)

• Django app can run inside or outside of httpd processes
(embedded or daemon)

• No concerns about lifecycle of Django app since it matches
that of httpd — great for small scripts that don’t warrant
much effort

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

mod proxy + mod proxy protocol

mod proxy + mod proxy protocol

httpd

Django app

uWSGIHTTP

FastCGI

SCGI

• uWSGI/Gunicorn largely interchangable

• httpd/nginx largely interchangable

• Choice of wire protocols between web server and application

• Lifecycle of uWSGI has to be managed in addition to that of
web server

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

mod wsgi vs. mod proxy-based solution

Reasons you may want to move beyond mod wsgi:

• mod proxy supports more separation between web server and
application.

• Moving applications around or running applications in different
modes for debugging without changing web server

• Changes to the web front-end without affecting application
• No collision between software stack in web server vs. software

stack in application (e.g., different OpenSSL versions)

• mod proxy has a lot of shared code, configuration, and
concepts that are applicable to other application hosting.

• mod wsgi doesn’t support WebSockets.

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Choices within the mod proxy space

Further choices arise once mod proxy is selected:

• Wire protocol (HTTP, FastCGI, or SCGI)

• Socket transport (TCP or Unix)

• Load balancing

• Application container (uWSGI, Gunicorn, etc.)

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

HTTP vs. FastCGI vs. SCGI

• Speed (with httpd)
• SCGI faster than FastCGI
• FastCGI faster than HTTP

• Speed (with nginx) SCGI, FastCGI, HTTP pretty close
(significantly lower requests/sec than httpd with FastCGI or
SCGI for the workloads I tried)

• SCGI is by far the simplest protocol, and HTTP is by far the
most complex.

• Encryption
• HTTP supports encryption between web server and

application, but the others do not.

• Tool support (telnet-as-client, Wireshark, etc.)

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

What SCGI looks like

int main(int argc, char **argv)

{

socket(); bind(); listen();

while (1) {

int cl = accept();

read(cl, buf);

0x0000: 3233 3433 3a43 4f4e 5445 4e54 5f4c 454e 2343:CONTENT_LEN

0x0010: 4754 4800 3000 5343 4749 0031 0055 4e49 GTH.0.SCGI.1.UNI

0x0020: 5155 455f 4944 0056 5764 4f50 5838 4141 QUE_ID.VWdOPX8AA

0x0030: 5145 4141 476d 5745 6751 4141 4141 4c00 QEAAGmWEgQAAAAL.

0x0040: 7072 6f78 792d 7363 6769 2d70 6174 6869 proxy-scgi-pathi

...

write(cl, buf);

0x0000: 5374 6174 7573 3a20 3230 3020 4f4b 0d0a Status: 200 OK..

0x0010: 582d 4672 616d 652d 4f70 7469 6f6e 733a X-Frame-Options:

0x0020: 2053 414d 454f 5249 4749 4e0d 0a43 6f6e SAMEORIGIN..Con

0x0030: 7465 6e74 2d54 7970 653a 2074 6578 742f tent-Type: text/

0x0040: 6874 6d6c 3b20 6368 6172 7365 743d 7574 html; charset=ut

...

close(cl);

}

}

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

sysdig hint

sudo sysdig -X proc.name=httpd and fd.num=37

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

TCP sockets vs. Unix sockets

• With both httpd and nginx, for all protocols tested, Unix
sockets1 are noticeably faster than TCP.

• The more complex Unix socket permissions can be a blessing
or a curse.

• TCP supports distribution among different hosts.

• TCP consumes kernel resources (and confuses many users of
netstat) while sockets remain in TIME WAIT state.

• TCP’s requirement for lingering close can require more server
(application container) resources.

1Unix socket support in mod proxy for HTTP and FastCGI requires httpd
2.4.7 or later; Unix socket support in mod proxy for SCGI requires httpd 2.4.10
or later.

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Some cases with simple decision-making

• If speed is of absolute concern, pick SCGI with Unix sockets.

• If interoperability of your application stack for diagnostics or
any other purpose is of absolute concern, pick HTTP with
TCP sockets.

• If encryption between the web server and application is of
absolute concern, pick HTTP.

• If securing your application stack from other software in your
infrastructure is of absolute concern, and your application and
web server run on the same host, pick anything with Unix
sockets.

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

For this talk

SCGI with TCP sockets between httpd and the application2

LoadModule proxy_module modules/mod_proxy.so

LoadModule proxy_scgi_module modules/mod_proxy_scgi.so

2Mostly... Our WebSocket example is different.

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

SCGI differences between httpd 2.2 and 2.4

mod proxy scgi in 2.4

• Requires proxy-scgi-pathinfo envvar to be set in order to
set PATH INFO as required for many Python applications

• Adds support for Unix sockets (2.4.10)

• Supports internal redirects via arbitrary response headers set
by the application (2.4.13)

• Passing authentication headers to the application sanely

• Any generic features added to mod proxy in 2.4

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Differences between 2.4.something and 2.4.current

I.e., mod proxy scgi improvements after some level of Ubuntu, for
example

Ubuntu 14.04 has 2.4.7; Ubuntu 16.04 has 2.4.18; current
upstream is 2.4.20

Caught in the middle?

• 2.4.10 adds support for Unix sockets

• 2.4.13 supports internal redirects via arbitrary response
headers set by the application

• 2.4.13 adds CGIPassAuth

See https://wiki.apache.org/httpd/Get24 for hints on which
distros bundle which levels of httpd.

https://wiki.apache.org/httpd/Get24

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

PPA for httpd 2.4.latest

https://launchpad.net/~ondrej/+archive/ubuntu/apache2

• ppa:ondrej/apache2

• From Onďrej Surý

• Tracks httpd 2.4.x

• Currently has 2.4.20 for Ubuntu precise, trusty, wily, and
xenial

https://launchpad.net/~ondrej/+archive/ubuntu/apache2

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Minimal build of httpd 2.4 to support Python applications

If you need to build from source

./configure \

--with-included-apr --enable-nonportable-atomics \

--enable-exception-hook \

--enable-mpms-shared=all --enable-mods-shared=few \

--enable-expires=shared --enable-negotiation=shared \

--enable-rewrite=shared --enable-socache-shmcb=shared \

--enable-ssl=shared --enable-deflate=shared \

--enable-proxy=shared --enable-proxy-scgi=shared \

--disable-proxy-connect --disable-proxy-ftp \

--disable-proxy-http --disable-proxy-fcgi \

--disable-proxy-wstunnel --disable-proxy-ajp \

--disable-proxy-express --disable-lbmethod-bybusyness \

--disable-lbmethod-bytraffic \

--disable-lbmethod-heartbeat

(But keep proxy-http and proxy-wstunnel for WebSockets.)

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Building blocks on the application side

• Django for the web application framework

• uWSGI for the “container” that hosts/manages the
application processes, along with

• An init script to start/stop the application by controlling
uWSGI

• A uWSGI configuration file

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Where is the sample code?

https://github.com/trawick/httpd.py

(branch AC2016)

You’ll see snippets on later slides.

https://github.com/trawick/httpd.py

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Simplest little bit of Django

from django.http import HttpResponse

PATH_VARS = ('PATH_INFO', 'PATH_TRANSLATED', 'SCRIPT_FILENAME',

'REQUEST_URI', 'SCRIPT_URI')

def cgivars(request):

return HttpResponse('
'.join(map(lambda x: '%s => %s' %

(x, request.environ.get(x, '<unset>')), PATH_VARS))

)

urlpatterns = [

url(r'^cgivars/$', views.cgivars),

]

Listen 18083

<VirtualHost 127.0.0.1:18083>

Lots of stuff inherited from global scope

SetEnvIf Request_URI . proxy-scgi-pathinfo

ProxyPass /app/ scgi://127.0.0.1:3006/

</VirtualHost>

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Running the Django app via uWSGI

simple script for running in the foreground

• terminal or PyCharmˆHˆHˆHˆHˆHˆHˆHIDE, but not
deployment

VENV=/home/trawick/envs/httpd.py

${VENV}/bin/uwsgi --scgi-socket 127.0.0.1:3006 \

--module app.wsgi \

--chdir /home/trawick/git/httpd.py/Django/app \

--virtualenv ${VENV}

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Running the Django app in simple Python container

Sometimes you need to debug your app in a deployment-like
scenario, such as with a web server front-end.

• flup is pure Python, so you can attach for debugging in the
usual manner

• Uses the same protocol as production deployment

• May need to tweak processes/threads to make it easy to
debug a request

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

X-Sendfile to offload file serving to the web server

from django.http import HttpResponse

def sendfile(request):

filename = request.environ['DOCUMENT_ROOT'] + '/' + 'bigfile.html'

response = HttpResponse()

response['X-Sendfile'] = filename

return response

urlpatterns = [

url(r'^sendfile/$', views.sendfile),

]

add to .conf for httpd:

ProxySCGISendfile On

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

X-Location to offload request after application authorizes it

def protected(request):

filename = '/static/protected/index.html'

response = HttpResponse()

Django prior to 1.9 will turn this

into Location: http://127.0.0.1:18083/static/protected/foo

response['Location'] = filename

This is passed through unadulterated:

response['X-Location'] = filename

return response

add to .conf for httpd:

ProxySCGIInternalRedirect X-Location

ProxyPass /static/protected/ !

...

Only allow access to /static/protected/ if a request to /app/protected/

redirected there. (I.e., must have been redirected, must have hit

the app first)

<Location /static/protected/>

Require expr %{reqenv:REDIRECT_REQUEST_URI} =~ m#^/app/protected/#

</Location>

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Streaming a response through web server

from django.http import StreamingHttpResponse

def export_stacktraces(request):

def generate_response(qs):

yield '['

need_comma = False

for st in qs:

if need_comma:

yield ','

yield json.dumps(st.raw)

need_comma = True

yield ']'

resp = StreamingHttpResponse(

generate_response(Stacktrace.objects.filter(owner=request.user)),

content_type='application/json'

)

resp['Content-Disposition'] = 'attachment; filename=stacktraces.json'

return resp

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Handling /static/ for apps

With the proper preparation, Django’s ./manage.py collectstatic will collect
static files into a location that the web server knows about and can serve.

Alias /static/ {{ static_dir }}/

...

ProxyPass /static/ !

...

<Directory {{ static_dir }}/>

Require all granted

only compress static+public files (see BREACH)

SetOutputFilter DEFLATE

if they aren't naturally compressed

SetEnvIfNoCase Request_URI \.(?:gif|jpe?g|png)$ no-gzip

ExpiresActive On

ExpiresDefault "access plus 3 days"

Header set Cache-Control public

</Directory>

Consider something similar for /media/.

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

robots.txt in /static/ too?

Alias /robots.txt {{ static_dir }}/robots.txt

...

ProxyPass /robots.txt !

...

Consider something similar for /favicon.ico.

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Add load balancing

LoadModule proxy_balancer_module modules/mod_proxy_balancer.so

LoadModule lbmethod_byrequests_module modules/mod_lbmethod_byrequests.so

ProxyPass /app/ balancer://app-pool/

<Proxy balancer://app-pool/>

BalancerMember scgi://127.0.0.1:10080

BalancerMember scgi://127.0.0.1:10081

The server below is on hot standby

BalancerMember scgi://127.0.0.1:10082 status=+H

ProxySet lbmethod=byrequests

</Proxy>

(Also has a “balancer manager” which can be used to change settings dynamically)

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

I/O timeouts

• By default, the I/O timeout is the value of the Timeout

directive (i.e., same as client I/O timeout).

• ProxyTimeout overrides that for proxy connections.

• Max time without being able to read one byte when trying to
read (or similar for write)

• This covers application time to build the response.

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Recovery from backend errors

ProxyPass options:

• retry=seconds specifies the time before sending another
connection to a previously-unhealthy application (e.g.,
ECONNREFUSED)

• No other load balanced instances? You probably want this
much lower than the default, 60 seconds.

• For balancer members: failonstatus=nnn,nnn,... will
also treat the specified HTTP status codes from the
application as indicating that it is unhealthy

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Handling Basic auth in the application

• Apps commonly use form+cookie-based auth.

• Basic auth handled by the application may be useful.

• Normally httpd hides Authorization and
Proxy-Authorization request headers from applications
(can be subverted).

• mod wsgi provides the WSGIPassAuthorization directive to
enable that.

• CGIPassAuth3 directive enables this cleanly for all CGI-like
interfaces.

<Location /legacy-reports/>

CGIPassAuth On

</Location>

3httpd ≥ 2.4.13

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

WebSockets

• Long-running, lightweight connections
• Little if any overhead imposed on performance-sensitive

application (e.g., games)
• Little if any overhead imposed on infrastructure to maintain

lots of these connections

• Kept alive by browser and application container (ping and
pong)

• Application code in browser and application only wake up
when necessary

• Set up when a special HTTP request is upgraded to a
WebSocket tunnel between client and application

• HTTP proxies usually support WebSockets

• Requires HTTP from client to application, so no FastCGI or
SCGI transport for the WebSocket data

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Some Python WebSockets caveats

Now:

• WSGI doesn’t encompass WebSockets

• No other finalized PEP/standard covers Python interface to
WebSockets

• Not abundantly clear that current Django has a particular
right way to do it

• Lack of interchangability of components in some cases (e.g.,
Flask-SocketIO works with Gunicorn but not with uWSGI)

Start looking at:

• WSGI-NG
(https://github.com/python-web-sig/wsgi-ng)

• Django Channels
(https://channels.readthedocs.io/en/latest/)

https://github.com/python-web-sig/wsgi-ng
https://channels.readthedocs.io/en/latest/

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

WebSockets example

• Uses HTTP + WebSockets extension between web server and
application, instead of SCGI like in our other examples

• Uses uWSGI Python API instead of a container-agnostic API
or framework like Django; this works around some of the
caveats listed earier

• web server configuration would be the same anyway

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

WebSockets example using uWSGI API

import uwsgi # not installed in venv but works under uWSGI :(

html_template = <<<the JavaScript WebSocket client>>>

def application(env, sr):

if env['PATH_INFO'] == '/':

ws_scheme = 'ws'

if 'HTTPS' in env or env['wsgi.url_scheme'] == 'https':

ws_scheme = 'wss'

sr('200 OK', [('Content-Type', 'text/html')])

host = env.get('HTTP_X_FORWARDED_HOST', env['HTTP_HOST'])

return index_html_template % (ws_scheme, host)

elif env['PATH_INFO'] == '/ws/':

uwsgi.websocket_handshake(env['HTTP_SEC_WEBSOCKET_KEY'],

env.get('HTTP_ORIGIN', ''))

while True:

msg = uwsgi.websocket_recv()

uwsgi.websocket_send(msg)

else:

sr('404 NOT FOUND', [('Content-Type', 'text/plain')])

return 'Not found'

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Some of the JavaScript code

See the template aspect of the JS snippet, as well as the I/O.

function init() {

var s = new WebSocket("%s://%s/ws/");

...

s.onopen = function() { s.send(i); }

s.onmessage = function(e) {

window.setTimeout(function () {

s.send(i);

}, 1500);

}

s.onerror = function(e) { ... }

s.onclose = function() { ... }

}

window.onload = init;

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Running the WebSocket app

simple script for running in the foreground

• terminal or IDE, but not deployment

VENV=/home/trawick/envs/httpd.py

gevent parameter needed to support more than one WebSocket

request (i.e., set up gevent)

${VENV}/bin/uwsgi --http-socket 127.0.0.1:3007 \

--http-raw-body \

--gevent 100 \

--wsgi-file app.py \

--chdir /home/trawick/git/httpd.py/uWSGI-websocket

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

.conf for proxying to the WebSocket app

Listen 18085

<VirtualHost 127.0.0.1:18085>

Lots of stuff inherited from global scope

CustomLog logs/websocket-app-access.log common

ErrorLog logs/websocket-app-error.log

LogLevel warn

Note that /ws/ is the exception among all requests.

Put that first so that it won't be handled by HTTP.

ProxyPass /ws/ ws://127.0.0.1:3007/ws/

ProxyPass / http://127.0.0.1:3007/

ProxyPassReverse / http://127.0.0.1:3007/

</VirtualHost>

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

End of WebSockets example

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

A more complete example .conf

for a non-WebSockets application, in the form of a Jinja2 template

<VirtualHost *:80>

ServerName {{ canonical_server_name }}

Redirect permanent / https://{{ canonical_server_name }}/

</VirtualHost>

<VirtualHost *:443>

ServerName {{ canonical_server_name }}

ServerAdmin me@example.com

CustomLog {{ log_dir }}/httpd-access.log common

ErrorLog {{ log_dir }}/httpd-error.log

LogLevel {{ httpd_log_level }}

continued

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

A more complete example .conf

DocumentRoot unused since / is proxied; point it

to something users can access anyway

DocumentRoot {{ static_dir }}/

<Directory />

Options FollowSymLinks

Require all denied

AllowOverride None

</Directory>

continued

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

A more complete example .conf

SetEnvIf Request_URI . proxy-scgi-pathinfo

ProxyTimeout 30

ProxySCGISendfile On

ProxySCGIInternalRedirect X-Location

Alias /robots.txt {{ static_dir }}/robots.txt

Alias /static/ {{ static_dir }}/

Alias /media/ XXXXX

ProxyPass /robots.txt !

ProxyPass /static/ !

ProxyPass /media/ !

ProxyPass / scgi://127.0.0.1:{{ application_port }}/ retry=5

continued

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

A more complete example .conf

<Directory {{ static_dir }}>

Require all granted

only compress static+public files (see BREACH)

SetOutputFilter DEFLATE

if they aren't naturally compressed

SetEnvIfNoCase Request_URI \.(?:gif|jpe?g|png)$ no-gzip

ExpiresActive On

ExpiresDefault "access plus 3 days"

Header set Cache-Control public

</Directory>

continued

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

A more complete example .conf

SSLEngine on

SSL protocols/ciphers/etc. inherited from global scope

Header always set Strict-Transport-Security "max-age=31536000"

SSLCertificateKeyFile /path/to/server.key

SSLCertificateFile /path/to/server.crt

</VirtualHost>

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

/ PLAY [Configure and deploy the \

\ application code /

\

\ __ _/_/

\ __/

(==)_______

(__)\)\/\

||----w |

|| ||

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Vagrant and Ansible

• Ansible for system configuration and application deployment
• Same automation for staging, production, other images
• Same automation whether system is provisioned with Vagrant

or other tools

• Vagrant to automate creation of server VM
• Automating mint machine together with configuration and

deployment ensures that all aspects are covered.

https://github.com/trawick/httpd.py/tree/AC2016/

Django/deploy

https://github.com/trawick/httpd.py/tree/AC2016/Django/deploy
https://github.com/trawick/httpd.py/tree/AC2016/Django/deploy

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Features of the automation

The deployment consists of one Ubuntu server, the webserver,
which runs the web server, Django application, and database.

• Create a user to own application resources, add to sudoers

• Install necessary system packages, as well as httpd-latest from
a PPA

• Set up PostgreSQL user and database

• Create Python virtual environment with necessary libraries

• Configure httpd to route to application

• Configure uWSGI and its lifecycle to host application

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Parts of the automation

Vagrantfile

Create the machine, invoke Ansible

Ansible playbook deploy.yml

Commands to configure system and deploy
application

Ansible hosts file
Variables specific to a particular server, such as
passwords or IP addresses or . . .

Template files
Various configuration files filled in with data specific
to the deployment or server

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Simplified file layout for example

./deploy.yml

./ansible/vagrant-hosts

./ansible/OTHER-hosts

./templates/init-script.j2

./templates/django-app.conf.j2

./templates/uwsgi-ini.j2

./Vagrantfile

(significantly simplified layout compared with many Ansible
examples)

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Invoking Vagrant and Ansible

• Bring up VM, create and/or provision as necessary

$ vagrant up

• Re-provision existing VM

$ vagrant provision

• Create new, provisioned VM from scratch, discarding one that
already exists

$ vagrant destroy -f ; vagrant up

• Invoke Ansible directly against a different host

$ ansible-playbook -i ansible/OTHER-hosts deploy.yml

• See also vagrant up, vagrant halt, vagrant suspend,
vagrant ssh, etc.

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Using files directly from control host or from repo?

• Ansible config and templates/other files copied to server via
Ansible come from git checkout on control host.

• No need to push these changes to git repo before testing

• Application runs from git checkout on the server.
• Must push application updates to git repo before re-deploying

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Vagrantfile

Vagrant.configure(2) do |config|

config.vm.box = "precise32"

config.vm.box_url = "http://files.vagrantup.com/precise32.box"

config.vm.network "private_network", ip: "10.10.10.15"

config.vm.provision "ansible", run: "always" do |ansible|

ansible.verbose = "vvvv"

ansible.limit = "all"

ansible.playbook = "deploy.yml"

ansible.inventory_path = "ansible/vagrant-hosts"

end

end

• precise32 is 32-bit Ubuntu 12 server
• Create entry in your /etc/hosts to map simple-django.com to

10.10.10.15

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

ansible/vagrant-hosts

[webservers]

vagrant ansible_ssh_host=127.0.0.1 ansible_ssh_port=2222

[webservers:vars]

initial_user=vagrant

log_dir=/tmp

pg_password=simple-django-db-password

git_repo_version=master

app_processes=1

app_threads=2

• 2222 is ssh port assigned by Vagrant for webserver VM

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Overall structure of deploy.yml

- name: Create remote user

hosts: webservers

vars:

remote_user: django-user

remote_user: "{{ initial_user }}"

sudo: true

tasks:

<<<create remote user, add to sudoers>>>

- name: Configure and deploy the application code

hosts: webservers

vars:

remote_user: django-user

application_port: 3006

http_port: 80

remote_checkout: /home/django-user/httpd.py

<<<other settings>>>

remote_user: "{{ remote_user }}"

tasks:

<<<remaining system and application configuration>>>

handlers:

<<<restart application and/or web server at end>>>

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Install/update python-software-properties

- name: Make sure python-software-properties is installed

apt: pkg=python-software-properties state=latest

sudo: yes

< TASK: Make sure python-software-properties is installed >

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

changed: [vagrant]

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Add PPA repo for httpd 2.4.latest

- name: Add ppa repo for httpd 2.4.latest

apt_repository: repo='ppa:ondrej/apache2/ubuntu'

sudo: yes

< TASK: Add ppa repo for httpd 2.4.latest >

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

changed: [vagrant]

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Install system packages
- name: Install packages

apt: name={{ item }} state=latest

sudo: yes

with_items:

- apache2

- git

- python-virtualenv

- postgresql

- libpq-dev

- python-dev

- python-psycopg2

< TASK: Install packages >

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

changed: [vagrant] => (item=apache2,git,python-virtualenv,postgresql,libpq-dev,...

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Run httpd at boot

- name: Make sure httpd is started and will run at boot

service: name=apache2 state=started enabled=yes

< TASK: Make sure httpd is started and will run at boot >

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

ok: [vagrant]

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Activate httpd modules
- name: Configure system httpd to include various modules

apache2_module: state=present name={{ item }}

sudo: yes

with_items:

- proxy

- proxy_scgi

- headers

- deflate

- expires

notify: restart system httpd

< TASK: Configure system httpd to include various modules >

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

changed: [vagrant] => (item=proxy)

changed: [vagrant] => (item=proxy_scgi)

changed: [vagrant] => (item=headers)

ok: [vagrant] => (item=deflate)

changed: [vagrant] => (item=expires)

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Remove Debian/Ubuntu default vhost

- name: Remove default virtualhost file.

file:

path: "/etc/apache2/sites-enabled/000-default.conf"

state: absent

sudo: yes

notify: restart system httpd

__

< TASK: Remove default virtualhost file. >

--

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

changed: [vagrant]

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Configure application vhost

- name: Configure system httpd

template: src=templates/django-app.conf.j2

dest=/etc/apache2/sites-enabled/{{ project_name }}-vhost.conf

sudo: yes

notify: restart system httpd

< TASK: Configure system httpd >

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

changed: [vagrant]

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Create uWSGI config directory

- name: Create uWSGI config directory

file: >

dest={{ uwsgi_cfg_dir }}

mode=755

owner=root

group=root

state=directory

sudo: yes

notify: restart application

< TASK: Create uWSGI config directory >

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

changed: [vagrant]

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Install/update uWSGI config

- name: Add application uWSGI config

template: src=templates/uwsgi-ini.j2

dest={{ uwsgi_cfg_dir }}/{{ project_name }}.ini

sudo: yes

notify: restart application

< TASK: Add application uWSGI config >

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

changed: [vagrant]

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Add application init script

- name: Add application init script

template: src=templates/init-script.j2

dest=/etc/init.d/{{ project_name }}-app

mode=0751

sudo: yes

notify: restart application

< TASK: Add application init script >

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

changed: [vagrant]

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Configure run-levels for application

- name: Configure run-levels for application

command: update-rc.d {{ project_name }}-app defaults

sudo: yes

__

< TASK: Configure run-levels for application >

--

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

changed: [vagrant]

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Run application

- name: Run application

action: service name={{ project_name }}-app state=started

sudo: yes

< TASK: Run application >

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

changed: [vagrant]

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Handler to restart application if needed

- name: restart application

service: name={{ project_name }}-app state=restarted

sudo: yes

< NOTIFIED: restart application >

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

changed: [vagrant]

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Handler to restart httpd if needed

- name: restart system httpd

service: name=apache2 state=restarted

sudo: yes

< NOTIFIED: restart system httpd >

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

changed: [vagrant]

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

.conf template
{% if http_port != 80 %}

Listen {{ http_port }}

{% endif %}

<VirtualHost *:{{ http_port }}>

ServerName simple-django.com

Lots of stuff inherited from global scope

DocumentRoot {{ remote_checkout }}/Django/docroot

<Directory {{ remote_checkout }}/Django/docroot/>

Require all granted

</Directory>

CustomLog {{ log_dir }}/django-app-access.log common

ErrorLog {{ log_dir }}/django-app-error.log

LogLevel warn

SetEnvIf Request_URI . proxy-scgi-pathinfo

ProxySCGISendfile On

<IfVersion >= 2.4.13>

ProxySCGIInternalRedirect X-Location

</IfVersion>

ProxyPass /static/protected/ !

ProxyPass /app/ scgi://127.0.0.1:{{ application_port }}/

Only allow access to /static/protected/ if a request to /app/protected/

redirected there. (I.e., must have been redirected, must have hit

the app first)

<Location /static/protected/>

Require expr %{reqenv:REDIRECT_REQUEST_URI} =~ m#^/app/protected/#

</Location>

</VirtualHost>

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

uWSGI configuration template

[uwsgi]

pidfile = {{ log_dir }}/{{ project_name }}.pid

daemonize = {{ log_dir }}/uwsgi-{{ project_name }}.log

scgi-socket = 127.0.0.1:{{ application_port }}

chdir = {{ django_src }}

module = app.wsgi

master = true

processes = {{ app_processes }}

threads = {{ app_threads }}

uid = {{ remote_user }}

gid = {{ remote_user }}

virtualenv = {{ virtualenv_dir }}

buffer-size = 8192

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Init script template
#!/bin/sh

SERVICE_NAME={{ project_name }}-app

PIDFILE={{ log_dir }}/{{ project_name }}.pid

UWSGI_INI={{ uwsgi_cfg_dir }}/{{ project_name }}.ini

UWSGI_ENV={{ virtualenv_dir }}

. ${UWSGI_ENV}/bin/activate

<<<helper functions>>>

case "$1" in

status)

status_service

;;

start)

start_service

;;

stop)

stop_service

;;

restart)

if is_running; then

stop_service

fi

start_service

;;

*)

echo "Usage: service $SERVICE_NAME {start|stop|restart|status}" >&2

exit 1

;;

esac

exit 0

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

General httpd features which can be useful

• Web server cache (mod cache, mod disk cache)

• Web server logging tricks
• Configure httpd and application log formats to include
UNIQUE ID

• Add response time (and maybe time to first byte4) in httpd
access log

• See
http://people.apache.org/~trawick/AC2014-Debug.pdf

for different tricks applicable to diagnosing application
symptoms.

• Load balancing and mod proxy balancer manager

• Monitoring capacity utilization for httpd and application

4mod logio’s LogIOTrackTTFB was added in 2.4.13.

http://people.apache.org/~trawick/AC2014-Debug.pdf

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Caktus Group project template

• Relatively complete application and infrastructure
configuration

• Much more complex than the Ansible example, but handles
many more requirements

• https://github.com/caktus/django-project-template

• Salt instead of Ansible

• nginx instead of httpd

https://github.com/caktus/django-project-template

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

A few things to add for the 5 hour version of this talk

• Django implementations of Basic auth

• Live load balancer demo, making dynamic changes via load
balancer manager interface

• Current status of WSGI-NG and Django Channels, how to
experiment with available code for Channels

• Your ideas

Introduction Generalities 2.4.what Brass Tacks Configuration/deployment example For Further Study

Thank you!

	Introduction
	Generalities
	2.4.what
	Brass Tacks
	Configuration/deployment example
	For Further Study

